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Abstract

A computationally efficient analysis is developed to predict the critical buckling loads

of geodesically stiffened composite panels under in-plane loading. The analysis procedure

accounts for the contribution of the in-plane extensional and out-of-plane bending stiffnesses

of the stiffeners through the use of Lagrange multipliers technique in an energy method

solution. The analysis is used to understand the effect of various stiffener deformation modes

on the buckling load and to determine skin deformation patterns of geodesically stiffened

panels under various load combinations.

The analysis routines are then coupled with the numerical optimizer ADS to create a

package for the design of minimum-mass stiffened panels, subject to constraints on buckling

of the panel assembly and material strength failure. Material failure in the skin and

stiffeners is estimated using a maximum strain criterion. The design variables that can be

used for optimization include thickness of the skin laminate, stiffener thickness and height,

and positions of straight stiffeners. Applied loads are uniaxial compression, pure shear, and

combined compression-shear.





Acknowledgements

This study was, in part, supported by the Aircraft Structures Branch, NASA Langley Re-

search Center under Grant NAG-I-643. Grant monitor was Dr..lames H. Statues, Jr. The sec-

ond author greatly appreciates the financial support of the grant. "Fhe first author appreciates the

GTA support provided by the Department of Fngineering Science and Mechanics.

ltQ

Iti





Table of Contents

1.0 Introduction ........................................................ !

Design Problem Formulation ............................................ 9

10

2.0

2.1 Geodesically Stiffened Wing Rib Panels ...................................

2.1.1 A global view of the panels ......................................... I0

2.1.2 Assumptions for the panel configa.lration ................................ 13

2.2 Design Variables And Constraints ....................................... 15

2.2.1 Design variables ................................................. 15

17
2.2.2 Constraints .....................................................

2.3 Overview Of The Analysis/Optimization ................................... 18

18
2.3.1 The optimizer ...................................................

20
2.3.2 The analysis ....................................................

3.0

3.1

3.2

3.2.1

21
Analysis Development ................................................

Fundamental Assumptions For The Analysis ............................... 21

Load Distribution Analysis In Prebuckling ................................. 22

23
Panel strains ....................................................

iv

Table of Contents





3.2.1.1

3.2.1.2

3.2.1.3

Skin constitutive equations ......................................

Stiffening cell constitutive equations ................................

Global strains ................................................

3.2.2 Load distribution ................................................

3.3 Instability Analysis Of Geodesically Stiffened Panels ..........................

3.3.1 The Rayleigh-Ritz method .........................................

3.3.1.1 The energy method ........ .--...................................

3.3.1.2 The Rayleigh-Ritz method ......................................

3.3.2 The I_agrange multiplier technique ....................................

3.3.3 Buckling of geodesically stiffened panels ................................

3.3.3.1 Skin total potential energy .......................................

3.3.3.2 Stiffener potential encrgy ........................................

23

24

25

29

30

3l

31

32

33

34

35

38

3.3.3.3

3.3.3.4

3.3.3.5

3.3.3.6

Second variation of the total energy of the panel ....................... 44

First constraint " continuity of skin and stiffener bending displacements ...... 47

Second constraint : Continuity of the skin and stiffener rotations ........... 47

51
Final System of Equations .......................................

............................. ° . , ° .... ° o ° . o ° o o 554.0 Verification and Examples

56
4.1 Partial Verification Of The New Analysis ..................................

56
4.1.1 Stiffener buckling ................................................

4.1.2 Partial verification with the previous analysis ............................ 57

58
4.2 Convergence Study ..................................................

60
4.2.1 Influence of K ..................................................

60
4.2.2 Influence of M and N .............................................

65
4.2.3 Influence of K' and I_..............................................

65
4.2.4 Conditioning of such a problem ......................................

69
4.3 Panel Buckling Response ..............................................

70
4.3.1 The panel buckling modes ..........................................

V

Table of Contents





704.3.1.1 Typesof response .............................................

4.3.1.2 Rotation of the skin along the stiffeners ............................. 79

4.3.1.3 Comparison of the Buckling Mode Shapes with I,MMI and FEM ......... 86

86
4.3.2 The buckling load ................................................

89
4.4 Second Constraint and Buckling I_oad ....................................

94
5.0 Wing Rib Design ....................................................

94
5.1 The Cell Distribution ................................................

95
5.1.1 Sensitivity to the cell distribution .....................................

5.1.2 Optimization of the cell distribution ................................... 95

5.2 Stiffener Rotational Effect / Optimum Design ............................... 98

98
5.2.1 Rotational effect and number of cells ..................................

99
5.2.2 Lamination of the stiffener ..........................................

103
5.2.2. l Thick skin .................................................

103
5.2.2.2 Thin skin ..................................................

103
5.2.2.3 Intermediate case ............................................

104
5.2.2.4 Practical aspect of laminated stiffeners .............................

104
5.2.3 Sandwich stiffeners ..............................................

105
5.2.4 Partial Conclusion ...............................................

105
5.3 ttorizontal stiffeners ................................................

106
5.3.1 Improvement of the panel buckling load ...............................

5.3.2 ttorizontal stiffeners and panel weight minimization ...................... 106

107
5.3.3 Remarks ......................................................

109
6.0 Concluding Remarks ................................................

111
7.0 References ................... . ....................................

Table of Contents vi





List of Illustrations

Figure

Figure

Figure

Figure

Figure

Fi_'ue

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1. Filament wound geodesicatly stiffened fllselage concept .................... 2

2. Wing box assembly with geodesicaUy stiffened spar ....................... 3

3. Geodesically stiffened spar fabrication method ........................... 4

4. General wing structure diagram ..................................... 6

5. I Joading on a wing rib ............................................ 7

6. Panel configurations ............................................. II

7. The cells ..................................................... 12

8. The stiffener .................................................. 14

9. The cells for which the width is a new design variable .................... 16

10. The optimization scenario ........................................ 19

11. The axis of the stiffener .......................................... 26

12. In-plane force resultants for the skin and the stiffeners .................... 27

13. The cell loading ................................................ 28

14. The dimensions. Definitions ....................................... 40

15. Location of the constraint points for both constraints .................... 48

16. Second constraint. Rotation of the skin and stiffener at the constraint points .... 49

17. Influence of K on the panel buckling load ............................. 61

18. Influence of M on the panel buckling load. . ........................... 63

19, Influence of N on the panel buckling load ............................. 64

20. Influence of K' on the panel buckling load ............................ 66

21. Influence of L on the panel buckling load ............................. 67

last of Illustrations vii





Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

22. Mode Shapes for 4CICxSOS (H = 3.614; .............................. 71

23. Mode Shapes for 4C1CxSOM (It = 3.614; ............................. 72

24. Mode Shapes for 4CICxSOB (II = 3.614; .............................. 73

25. Mode Shapes for 4CICxSOK (It = 3.614; .............................. 74

26. Mode Shapes for 4CICOSxS (11 = 1.205: .............................. 75

27. Mode Shapes for 4CICOSxM (11 = 1.205: ............................. 76

28. Mode Shapes for 4CICOSxB (I1 = 1.205: .............................. 77

29. Mode Shapes for 4CICOSxK (II = 1.2(15; ............ ".................. 78

30. Skin Slope along the stiffeners for 4CICxSOS (II--3.614: .................. 80

31. Skin Slope along the stiffeners for 4CICxSOM (II = 3.614: ................. 81

32. Skin Slope along the stiffeners for 4CICxSOB (tl = 3.614; .................. 82

33. Skin Slope along the stiffeners for 4C1COSxS (II = 1.205; .................. 83

34. Skin Slope along the stiffeners for 4C1COSxM (II = 1.205; ................. 84

35. Skin Slope along the stiffeners for 4C1COSxB (tl = 1.205; .................. 85

36. Buckled Mode Shapes for geodesically Stiffened Panels, I,MM1 and LMM2 .... 87

37. Buckled Mode Shapes for geodesically Stiffened Panels, FEM .............. 88

38. Influence of the second constraint on the panel buckling load of a 4CICxS0 panel 90

39. Influence of the second constraint on the panel buckling load of a 4C3CxS0 panel 91

40. Sensitivity to the cell distribution ................................... 96

41. Influence of the orientation of the outer plies of the stiffeners on the buckling load
100

of the panel .................................................

42. Influence of the orientation of the outer plies of the stiffeners on tile buckling load
of the panel ................................................. 101

43. Influence of the orientation of tile outer plies of the stiffeners on the buckling load
102

of the panel ............................... ' .................

viii
List of Illustrations





List of Tables

Table

Table

Table

Table

Table

Table

10
1. AS4/3502 Graphite-[!poxy Material Properties .........................

17
2. Number of additional design variables ................................

3. Comparison of Buckling l,oads for 3-cell cross-stiffened panels, between LMM1, 89
LMM2 and FEM ...............................................

4. Variable Stiffening Arrangement For Optimum (;ross Stiffened Panel under Com- 97
pression loading ................................................

5. Critical load of two LMM 1 optimum three cell cross-stiffened panels reinforced by 106
horizontal stiffeners .............................................

6. Weight reduction obtained for optimum 3 cell cross-stiffened panels including one 107
or three horizontal stiffeners ......................................

List of Tables
ix





1.0 Introduction

One of the most important considerations in designing aircraft and aerospace vehicles is weight.

By reducing the weight of an aircraft, it is possible to increase the flight range or increase the pay-

load. The structural frame of an aircraft generally represents a large percentage of its weight and,

therefore, it is important to choose the tightest but adequate material and structural configurations

to minimize the frame weight. Imposing additional requirements such as constraints on the dura-

bility and the cost makes the design problem even more challenging.

With the introduction of high performance composite materials and advanced manufacturing

processes over the past few decades, it is possible to use composite materiais for light-weight pri-

mary load carrying structures such as the fuselage of an aircraft. Filament winding and tow-

placement techniques now permit manufacturing of cylindrical (Figure 1) and flat (Figure 2 and

Figure 3) components with complex stiffening arrangements in a short enough time to be applied

in various industries cost effectively. Panels that have a grid of stiffeners with a prescribed uniform

pattern, such as the geodesically stiffened panels, are promising structural components since they

permit low cost fabrication through automated manufacturing techniques and have superior re-

sponse characteristics under combined loadings. Moreover, by going to different stiffening ar-

rangements, the response of these panels can be tailored to meet various design requirements.
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INNOVATIVE FABRICATION CONCEPT

Built-up Structure Intecjrated Structure

.,_ 450 .

• Highly lair intensive

• Large num_r of parts

• Large number of fasteners

• High structural assembly costs

• Highly automated fabrication

• Integral stiffened cocured design

• Low cost finished structure

Figure I. Filament wound geodesically stiffened fuselage concept: [After FREEMAN l]
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SKIN PANEL

INTEGRALLY STIFFENED

(PULTRUSION)

INTERMEDIATE J
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Figure 2. Wing box assembly with geodesically stiffened spar: [After BARRIE, et aF}
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Figure 3. Geodesically stiffened spar fabrication method: [After BARRIE, et af z]
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A promising application of geodesicaUy stiffened panels are the wing rib panels in large transport

aircraft. There are typically a large number of such components and, therefore, the weight saving

can be substantial. Wing ribs are used to separate the upper and lower skins of the wing

(Figure 4). Due to aerodynamic loads, engine forces, loads due to the fuel stored in the wing, etc.,

the wing is subject to a complicated combination of axial, bending and twisting forces. The bending

of the wing causes axial compressive loading of the fib while the twisting results in shear loading

(Figure 5). Geodesically stiffened panels present some superior properties in compression and

shear, and this is why they are likely to be used in this particular application.

Analysis of stiffened panels with a complex grid pattern can be quite difficult. During the opti-

miz.ation of such panels different computational techniques can be used for the analysis. For ex-

ample, the finite element method coupled with an optimizer (see Ref. 4) is often used for the

purposes of analysis. However, the use of the finite element method can become prohibitively ex-

pensive due to the large number of analyses that are needed for an optimization run. Also using

the positions of the stiffeners as design variables would require expensive remeshing of the structure

(at least one per call to the optimizer), and therefore, can be uscd only in cases for which the design

cost is not a real constraint. Another alternative is to use analytical techniques, such as the energy

method, coupled with an optimizer.

Application of the energy method to buckling analysis of flat unstiffened panels is commonly used

for geometry and boundary conditions where the buckled shape of the panel can be approximated

by a Fourier series. The values of the coefficients of the series corresponding to the actual shape

are calculated by minimizing the total potential energy.. In the case of panels stiffened by discrete

plate-like stiffeners, a similar approach can be used. In this case, in addition to the skin defor-

mations, the assumed form of the stiffener deformations can be expressed in Fourier series. The

mode shape and the load at buckling can be determined by minimizing the total potential energy

of the entire system while maintaining certain compatibility conditions between the deformation

of skin and the stiffeners. Such an approach has recently been used in Ref. 5 to determine buckling

loads of grid stiffened panels. In Ref. 5, the stiffeners are modeled as beams, and only the effect of

Introduction
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Figure 4. General wing structure diagram: [After SWANSON3]
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the bending stiffnesses of the stiffeners in the direction perpendicular to the skin is considered.

Continuity of the skin and the stiffener deformations at selected locations along the length of the

stiffeners are then imposed via the I Jagrange Multiplier technique.

The objectives of the present work are twofold. First, an improvement in the analysis procedure

described in Ref. 5 is sought by assuming the stiffeners to be modeled as plate elements and by in-

cluding the out-of-plane deformation of the stiffeners as a new degree of freedom. This additional

degree of freedom requires that the continuity of the rotations between the skin and the stiffeners

at the base of the stiffeners be maintained during the analysis procedure. The second objective of

the present work is to expand the design configurations studied earlier by allowing the stiffener lo-

cations to be design variables, such that a more optimal configurations under various loadings can

be obtained.

8
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2.0 Design Problem Formulation

The purpose of this section is to present the wing rib geometry and to state all the assumptions and

restrictions about the panel.

In section 2.1 the geometry of the ribs is introduced, anti the material for the skin and the stiffeners

is specified. In section 2.2 the design variables that will be used for the analysis and the optimiza-

tion are presented. Finally, in section 2.3 a brief introduction of the analysis/optimization tool is

given.

Design Problem Formulation 9



2.1 Geodesically Stiffened Wing Rib Panels

2.1.1 A global view of the panels

The rib is modeled as a rectangular panel 80 inches wide in the wing chord direction and 28 inches

high in the wing thickness direction. The panel incorporales a skin and a grid of stiffeners placed

symmetrically on both sides of the skin.

There are three kinds of stiffening arrangements: a panel can be longitudinally stiffened, diagonally

stiffened, or cross stiffened (Figure 6). To simplify the descriplion of these stiffening arrangements,

the concept of cells is introduced (Figure 7).

The skin is symmetrically laminated, balanced, and is made of AS4/3502 Graphite-Epoxy with

typical properties given in "Fable 1.

Table I. AS4/3502 Graphite-Epoxy Material Properties

Elastic Properties:

Longitudinal Modulus
Transverse Modulus
In-Plane Shear Modulus
Transverse Shear Modulus
In-Plane Poisson's Ratio

Strength Properties:

Longitudinal Tensile Strain Allowable
Longitudinal Compressive Strain Allowable
Transverse Tensile Strain Allowable
Transverse Compressive Strain Allowable
Shear Strain Allowable

Physical Properties:

Mass Density

El = 18.5 x 10_ lbf/in _
E2 = 1.64 x 106 lbf/in 2
Gl_ = 0.87 x 10n lbf/in 2
G_3 = 0.54 x 10_ lbf/in 2
vl2 = 0.30

r,f = 0.0090
rJ = 0.0080
r,f = 0.0055
r,_ = 0.0290
_2 = 0.0250

p = 0.057 lbm/in 3

Design Problem Formulation 10
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Longitudinally stiffened cell
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cell #I cell #2 cell #4 cell #5 cell#6

Figure 7. The cells
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The stiffeners are located on both sides of the skin, symmetrical about the midplane of the skin

laminate and are made of unidirectional AS4/3502 Graphite-Epoxy or are symmetrically laminated

and balanced (Figure g). Oblique stiffeners occur by pairs oriented at equal but opposite angles

with respect to the panel axis.

2.1.2 Assumptions for the panel configuration

In this sub-section, the assumptions used for the panel configuration are explained.

First, both the skin and the grid of stiffeners are set to be symmetric about the midplane of the skin.

In order to justify such a choice, the following facts are recalled:

1. A symmetricaUy laminated plate does not exhibit bending-extension coupling.

2. Moreover, by placing the stiffeners symmetrically on both sides of the skin, the panel

bending-extension coupling is eliminated.

3. A linear prebuckling equilibrium state is more realistic in the absence of bending-extension

coupling.

4. Only out-of-plane displacements participate in the buckling mode if the stiffened panel remains

in-plane during stable equilibrium.

Thus, for a symmetric panel the in-plane and out-of-plane deformations will be uncoupled so that

its buckling can be studied by considering the out-of-plane deflection w only. Moreover, based on

these assumptions the linear theory can be used to determine the internal load distribution in the

skin.

Secondly, the skin layup is balanced and oblique stiffeners occur in pairs oriented at equal but op-

posite angles with respect to the skin axis. This construction avoids the in-plane extension-shear

coupling, which may not be desirable in the case of wing ribs.

Design Problem Formulation 13



Symmetric. balanced laminated Skin

Symmetric. balanced laminated Stiffener

Figure 8. The stiffener
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Thirdly,the stiffeners are symmetrically laminated and balanced respectively to avoid bending-

extension coupling (B;j = 0) and in-plane extension in-plane shear coupling (/t1_ = A26 = 0).

Fourthly, like in the previous study 5, the effect of bending-twisting coupling terms DIr, D:, is ignored

for both the skin and the stiffeners; this simplifies the analysis, llowever, it is well known that the

presence of these terms can account for a considerable drop in the buckling load and sensitivity to

the direction of applied shear load. For this reason this analysis is used for specially orthotropic

laminates for which D16 = 026 = 0.

Finally, it is assumed that when the panel is loaded by uniform end shortening the spars are rigid

enough to restrain the panel deformation to zero (_, = 0, N, :_ 0).

2.2 Design Variables And Constraints

2.2.1 Design variables

The design variables are the parameters that will be changed to optimize the panel. During this

study, the design variables are taken to be the stiffener height and thickness, the skin thickness, and

the cell distribution. The number of additional variables needed to define the cell distribution de-

pends on the number of cells and is equal to the number of independent cell widths that are needed

to fully defme the symmetric cell distribution (it is the number of degrees of freedom of the cell

distribution). Figure 9 shows the cells for which the width is a design variable. These cells are

shaded in the figure. The following table ('Fable 2) gives the number of additional variables needed

to take into account the cell distribution during the design. For example, a seven cell panel requires

three new design variables.

Design Problem Formulation 15
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Table2. Numberofadditionaldesignvariables

Number of cells Number of new variables

1
2
3
4
5
6
7
8
9
l0

0
0
I
l
2
2
3
3
4
4

2.2.2 Constraints.

The constraints that are used for this study include

1. The panel buckling constraint,

2. Material failure constraint,

3. In case of cell-width design variables constraints for linking the design variables.

In the analysis conducted by Phillips s, the buckling of the skin and the buckling of the stiffeners in

their own out-of-plane direction were studied separately. As will be presented in the next chapter,

one of the major improvements of this study over the one presented in Ref. 5 is the removal of the

separate panel and stiffener buckling analysis used by PhiUips. Because equations governing the

buckling of the panel are modified to include the stiffeners as plate elements, the panel buckling

Design Problem Formulation 17



constraintcan include both the skin and stiffener buckling together as an assemblage.

2.3 Overview Of The Analysis]Optimization

A computerized code can be used for the preliminary design of grid stiffened flat panels. The com-

puter code developed in this work has two main parts: the optimizer and the analysis. The opti-

mizer and analysis are called by the main program in an iterative procedure.

1. The optim_er decides how to change the design v_riables based on the constraints, the objec-

tive function value, and their derivatives with respect to the design variables.

2. The analysis then uses the design variables to evaluate the new constraints and the new ob-

jective function (e.g., the panel weight).

This procedure, as represented in Fignre 10, is repeated until a design is reached for which the ob-

jective function is minimized and all the constraints are satisfied.

As was mentioned in the introduction, the analysis could be done with a finite element code, but

it would be computationally too expensive. Thus, instead of using the Finite Element Method a

method that involves both the Energy Method and the I agrange Multiplier Technique is used.

2.3.1 The optimizer

The optimization code ADS 6 is used as a "black box" to which the analysis subroutine gives the

constraints and objective function values, and from which the modified values of the design vari-

ables are obtained.

Design Problem Formulation 18
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ADSisa Fortran optimization program for solution of nonlinear constrained problems. It is de-

signed to be used as a subroutine in a Fortran code. ADS offers many selections for the strategy,

the optimizer, and the one-dimensional search used in optimization. Selection of these options

depends upon the problem to be solved. The ADS manual suggests the following combination of

options for problems with mildly nonlinear objective function and ccmstraints, and problems in

which only a few constraints are active. Based on the previous authors (Ref. 5) experience, the

present problem fits into this description, and the following options are employed:

1. The strategy can be either Sequential Convex Programming or Sequential quadratic program-

ming.

2. The optimizer is the modified method of feasible directions for constrained minimization.

3. The appropriate one-dimensional search is such that the minimum of a constrained function

is found by first finding the bounds and then by using a polynomial interpolation.

2.3.2 The analysis

The energy method is used to find the total potential energy of the panel for displacements of the

skin or the stiffeners expressed in terms of Fourier series. Then, with the use of Lagrange multi-

pliers, this energy is minimized subject to the constraints that enforce the compatibility of the skin

and stiffener deformations. As will be shown, a generalized discrete eigenvalue problem is obtained.

The smallest eigenvalue of this problem corresponds to the critical buckling load of the panel, and

its corresponding eigenvector corresponds to the buckling mode shape.

Design Problem Formulation
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3.0 Analysis Development

The method used to analyze grid stiffened flat panels under in-plane loading is described in this

chapter. In the first section, the assumptions corresponding to this analysis are stated. In section

3.2 the load distribution analysis is established. Then, in the section 3.3 the stability equations of

the panel are derived.

3.1 Fundamental Assumptions For The Analysis

The first assumption of this analysis is that the panel deformations prior to buckling are small

enough to allow the application of the principle of superposition of displacements under the action

of multiple external loads.

Secondly, an appropriate prebuckling equilibrium analysis is employed to estimate the load dis-

tribution in the elements of the wing ribs. Interaction of the prebuckling deformations of the skin

and the stiffeners are ignored.

Analysis Development
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Micro-mechaniccomplicationsat the stiffener intersection points, stress concentration in the cor-

ners between the skin and the stiffener and imperfections due to the manufacturing related issues,

such as resin rich and resin starved regions resulting from filament winding, are ignored. Briefly, the

wing rib is composed of perfectly uniform plates connected to each other. The load is assumed to

be uniform in the skin and the stiffeners, and unidirectional in the stiffeners.

Thirdly, it is assumed that the plates are thin enough to neglect transverse shear effects and to apply

the classical lamination theory for both the skin and the stiffeners.

Finally, the panel is loaded by uniform end shortening and it is assumed that the panel strains are

spatially uniform. Moreover the spars are supposed to be rigid enough to ensure _,x= 0 (X is the

long axis of the panel). In the case of shear, the strains r., and r.y are set to zero and loading is in-

troduced through uniform shear strain y,y.

3.2 Load Distribution Analysis In Prebuckling

This part of the analysis is divided into three steps. First, the panel strain vector is computed. Then,

using tile constitutive equations the loads carried by the _kin and the stiffening cells are derived.

Finally, using adequate geometry transformations, the longitudinal load in each stiffener is corn-

puted.

Since the cell distribution is not uniform and the panel is loaded by uniform end shortening, the

applied load is not uniform along the long edges of the panel. For this reason, the panel average

compressive (or shear) stress resultant is defined as the ratio of the total compressive (or shear) load

over the width of the panel.
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3.2.1 Panel strains

The total applied compressive load P and the shear load S are distributed among the skin and the

different cells by assuming uniform end shortening of the panel.

For longitudinally stiffened panels the panel strains are the same independent of the cell distrib-

ution. Therefore, the load distribution for a longitudinally stiffened panel is obtained using the

previous analysis 5 developed for uniform cell distribution. For diagonally stiffened and cross-

stiffened panels with non-uniform cell distribution some changes have to be made.

3.2.1.1 Skin constitutive equations

The constitutive equations of a general laminate is

M s B s D s

(1)

where {Nq is the vector of in-plane stress resultants, [Mq is the vcctor of moment resultants, {e}

is the vector of midplane in-plane strains, {_} is lhe vector of curvatures, and the superscript s

stands for skin (the skin of the stiffened panel). Since the skin laminate is assumed to be symmetric,

there is no coupfing between in-plane extension and out-of-plane bending. Therefore, the

constitutive equations corresponding to the in-plane stress resultants and strains are written as

{N/} = /
N. s [A;,

E K

{,t
)' xV

(2)

Moreover, the skin laminate is assumed to be a balanced laminate. As a result, the constitutive

equations can be simplified further:
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UX

2 A22

N._ys 0

o{,}
A_6 Yx_,

(3)

3.2.1.2 Stiffening cell constitutive equations

The constitutive equations of a regular grid of stiffening arrangement were derived by Phillips and

GurdalL For a cross-stiffened panel or a diagonally stiffened panel the constitutive equations of a

stiffening cell are given by

r IirNx At I A_2 0 r,x

N,c), r 0 A_6 Y _v

(4)

where the superscript r stands for stiffening arrangement and the A" terms are given by

2AEg 3 r 2AE_, 2
c AI2 --- " cs

b b

2AEe 2 r 2AE_ 3
L sc A22=- l-_S

2A Ee 2
A_ 6 _ csb

(5)

with

Ee : axial elastic modulus of the stiffeners

A : cross sectional area of the stiffeners

L : cell width

b : panel height

b
ck : arctan(--_)
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In the case of laminated stiffeners, AEt is replaced by A,( I'If _h where Art ri_ is the in-plane stiffness

of the laminate along the _ axis of the rib (Figure I I), and If rib is the stiffener height.

These constitutive equations change from one cell to another and will only be used to compute the

load carried by a single stiffening cell. The in-plane force resultants for the skin and the cells are

presented in Figure 12.

The load carried by the stiffening cell (see Figure 13) is given by

r• = Nxi b

r

_,y = Nyi L

Fr h r
xy = N_y i I.

U_ = rv Nxv i h

(6)

3.2.1.3 Global strains

First, only the compressive load P is considered. -['his load is carried by the stiffening cells and the

skin. Since _ = 0, the constitutive equations yield

nc

or
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e P (8)
8y _ rio '

i---I

where the index i stands for the stiffened cell number, l.i is the width of the cell number i, a is the

panel width, ,_ is the panel strain due to the compressive load P, and nc is the number of cells.

Now, only the shear load is taken into account. [!sing a methodology similar to compression

loading analysis yields a shear strain

s s (9)
Y _y _ nc '

A_ a + E ,4'c_iIq
i=I

where S corresponds to the total shear load.

3.2.2 Load distribution

Using the principle of superposition, when both compressive and shear loading are applied to the

panel, the strains are given by

p s (10)

and the stress resultant vector in the skin can now be oblained from the skin constitutive equations

A¢2

S

NSy A_6 )'rv

This stress resultant vector in the skin is uniform.
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Theloadcarriedbythe i t* cell is obtained from the stiffened cell constitutive equation and equation

(6) as

AI2 i b r,vb;_i r P

-r _ {rP t

Fyi ] A22i l.i r, v

,r h r S
Fxv i A66i l-i )' rv

.rv r S

(12)

Using the same geometric transformations defined in Ref. 5, lhe longitudinal load carried by the two

stiffeners in the i';' cell is given by

4"
4"

Fli - 2 sin (hi + 2 cos'hi 2 sin 4i 2 cos 4i

(13)

3.3 Instability Analysis Of Geodesically Stiffened Panels

In this section, the buckling analysis of grid stiffened flat panels is established.

The two main modes of failure of a geodesically sliffened panel are a material strength failure and

buckling. In order to design an optimum wing rib, these two modes have to be studied. The ma-

terial failure analysis of the panel is done by the systematic application of a maximum strain crite-

rion to the skin and the stiffeners, for any panel configuration. The remaining mode is due to an

instability of the panel under external loads. Once the critical loading is reached the effect is

buckling failure of the panel.
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In this part, an analysis tool is developed to determine the critical loads of geodesically stiffened

panels. For this purpose the Rayleigh-Ritz method is coupled with the I_agrange multiplier tech-

nique to obtain a constrained system on which a stability analysis is performed.

3.3.1 The Rayleigh-Ritz method

The Rayleigh-Ritz method is based on energy methods and is widely used for the buckling, bending

and vibrations of beams and plates. This approximate solution method is useful in the case of

problems for which the differential equations are too complicated to solve.

3.3.1.1 The energy method

The total potential energy is defined as the sum of the strain energy stored in the body added to the

potential energy of the external forces (equal to minus their work)

FI(u,v,w)=U+V ,
(14)

where u,v,w are the displacements in the x,y,z directions and U and V are the strain energy and the

potential energy of the applied external forces, respectively.

A state of stable equilibrium of a body is then defined by the two following requirements:

. The total potential energy has a stationary value or 7

l-l(u, v, w) = U + V = Stationary value
(15)

2. The total potential energy is minimum.
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3.3.1.2 The Rayleigh-Ritz method

In the Rayleigh-Ritz method, the additional displacements due to buckling (u,v,w) are expressed in

the form of a finite series. For example, in the case of a plate problem the three additional dis-

placements can be expressed as

M K

u= E Z AmkUmt_('_'"l_)

rn=l k=l

P Q

• "V '

p=lq=l

R S

w_-E Z
r=ls----1

(16)

where U_.,, Vp_, IV,, are called shape functions and A,.,, Br,, ('_ are the undetermined coefficients.

The shape functions should be chosen carefully, the general guideline for their selection is the fol-

lowing :

1. Each one of the shape functions must satisfy the essential boundary conditions.

2. In order to simplify the analysis, they should be chosen, if possible, to be in the separation of

variables form:

/;Ix1, x2...... rN) = r'l (xl) l:2(x=).../;'_t.v_) (17)

. To reduce the number of terms in the series, and hence reduce the order of the system to be

solved, the shape functions should also be chosen to correspond as closely to the actual de-

formed shape of the body as possible. For example, in the case of free oscillations of a spring,

a well known function (sin {ot) is a-perfect shape fimction, performing much better than

would a polynomial function of time.
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Substituting Eq.(16) for the buckling displacements into the second variation of 1-I (i.e., 651-I), the

Trefftz criterion (6(6_r) = 0) is the variational statement for the buckling:

0621-I - 0 m = I, 2 ..... M
cVAmk k = I, 2..... K

062i-i = {} p = 1,2 ..... P
,gGq q= 1,2 ..... Q

062I-I =0 r= 1,2 ..... R
c_(/rs s = 1.2 ..... S

(18)

This set of linear simultaneous equations represents the stability condition for the problem.

3.3.2 The Lagrange multiplier technique

This method represents a powerful tool for the minimization of a functional subject to constraints

on its variables.

[:et _r be the fimctional to minimize

(19)

subject to the foUowing .1 constraints:

Cl(xl, x2..... x_) = o

C2(& , x 2..... x_) = 0
(20)

C1(xl, x 2, ..., xtv) = o

The following function L, called the Lagrangian, is built
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L(x, 7) = Fl(x) + _,lCl(x) + y2C2(x) + "'" + YJCI(x)

J

= n(x)+ _ _/C/(x)
,/= I

(21)

where x find _/are; respectively, the vector of the variables x_, x_ ..... xN and the Lagrange multi-

pliers. Note that there is exactly one I agrange multiplier per constraint.

Stationarity of the second variation of FI subjected to the .I constraints requires the N +.I condi-

tions

OL(x, ),)
Ox n

,)L(x, _)

&9

=0 n=l,2 ..... N

-- = 0 ./= l, 2 ...... i

(22)

Recalling equation (21), this can also be written as

Oxn + y]_=O n= 1,2,...,N
j=l

C/x) = o .i= l, 2,. .... I

(23)

which represents a set of (N + ./) simultaneous equations in the (N + ./) unknowns x and 7.

3.3.3 Buckling of geodesicaily stiffened panels

In the present analysis, the I_agrange multiplier method is applied to the stability analysis of

geodesically stiffened panels. The functional that is used is the second variation of the total po-

tential energy of the panel, which is the sum of the total potential energies of the skin and stiffeners.

The total potential energies of the skin and stiffeners are derived in terms of independent shape
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functions. Likewise, constraints that enforce the continuity of the deformations of the skin and

stiffeners are written in those terms. Certain derivatives are then used to obtain the set of equations

that governs the entire system.

More specifically, the l_agrange multiplier method is used to ensure the compatibility of the out-

of-plane deformation of the skin, w,_i,,, with the transverse in-plane deformation pattern of the

stiffeners, and the compatibility of the skin and stiffener rotations along the stiffener line of attach-

ment. This is achieved by imposing constraints at a finite number of points (collocation) along the

stiffener axes. Then, the second variation of the total potential energy is made stationary subject to

the all the constraints simultaneously.

There are five main parts in this section:

l. Derivation of the second variation of the total potential energy of the skin.

2. Derivation of the second variation of the total potential energy of the stiffeners.

3. Constraint 1 : flexural contribution of the stiffeners.

4. Constraint 2 : continuity of skin and stiffener rotations.

5. Connections and final eigenvalue system.

3.3.3.1 Skin total potential energy

In order to explain all the future choices, recall here the main assumptions that were made about

the skin. The skin laminate was chosen to be symmetric about the midplane (Bii = 0), balanced

(A_6 = A26 = 0), and specially orthotropic (D_6 = D_6 = 0). The anisotropic coupling effects are neg-

lected s and the panel is subjected to uniform in-plane forces only.

Whitney 7 gives a complete derivation of the strain energy of a laminated plate. Since the skin is

balanced, symmetric and specially orthotropic, this energy can be simplified by discarding the terms
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whicharemultipliersof A,_,A_6,B;/, Dtr,D:_. Moreover, since the strain energy is uncoupled, the

strain energy due to in-plane displacements is considered as an arbitrary constant 7. The second

variation of the strain energy is

62U = --2. [17)1l(W,xx)2 + 2Dl2(W,xx)(W,yv ) + D22(w,yy) 2 + 4])66(W,_y) 2] dx dy ,
(24)

where (see Figure 14) a is the skin width in the x direction, b is tile height in the y direction, De

are the bending stiffnesses, and w is the skin out-of-plane deflection due to buckling.

The second variation of the potential energy of the external in-plane forces is given by

a b

, °

(25)

where N_, N,y, Ny are the applied loads in prebuckling equilibrium.

The second variation of the total potential energy of the skin is defined as

327r_l<in = 32U + (52| i . (26)

The shape function for the out-of-plane deflection must be chosen to satisfy all the kinematic

boundary conditions, which are those of a simply supported plate:

w=O at x=fl, a (27)

w=O at y=O,h

The following shape function seems to be adequate for such a problem.

M N nrcy 0 < X < a

Z Z rmrx sin-- - (28)w(x,y) = Am. sin --T- b 0 < y _< b
m=ln=l
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Moreover, the chosen shape function satisfies the mechanical boundary conditions as well:

M,: = - (I) 1lw,xx + Di2w,vp) = 0 at x = 0, a

My = - (Di2W,xx + D22w,.vy) = 0 at y = 0, b

(29)

Using this shape function and introducing a common multiplicative factor 2 extracted from the

applied load (proportional loading) defined by-

N x = ,_Nx

=

N_p = ).N_v

(3O)

the following expression for the second variation of the total potential energy of the skin can be

obtained (Phillips and GurdalS):

62rrskin = 62 U + 62 V

M N

62U= Z Z Am,,2P mn

m=ln=l

_52V = _ ). A 2Rmn jr
" " Dl_1 ""

n In=l

N M N A A ¢;rnnpq'_

m=l n=l p= I q=l

(31)

where

2 n
8

R mn 2ab [N--£(_) 2 n) 2]_-
8

I 4mnpq

SmnP q= _xy (p2_m2)(n 2_q2) '

0,
(m + p) and (n + q) odd 1
otherwise
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3.3.3.2 Stiffener potential energy

Instead of considering the stiffeners as beams as was done in the previous study '_,they are considered

here to be plates. In the previous study deformation of the stiffeners in their out-of-plane direction

was not taken into account; only flexural deformation in the out-of-plane direction to the skin was

included. Since the previously obtained optimt_ designs are composed of stiffeners with heights

15 to 20 times larger than their thicknesses (see Ref.5), the beam assumption may not be valid.

Let _l be the longitudinal axis of the stiffener, _ its transverse axis, X its out-of-plane axis, and

u,v,w their corresponding displacements. Assuming that cross-sectiona!planes remain plane and

normal to the stiffener axis as the stiffener bends in its own plane" ,

u(n, _) = uo(n) - _ --
_vo(n)

c3rl
(32)

Moreover, for small displacements it is assumed that

v(n,¢) = vo(n) (33)

where u_, vo are the displacements at _ = x = O, i.e., the base of the stiffener.

Complete derivation of the strain energy of a general laminated plate, starting with the Kirchhoff

displacement-strain relations, is given by Whitney 7 • In the case of a symmetric, balanced and spe-

cially orthotropic plate, the second variation of the strain energy is given by
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+

(34)

where L, It, -c, are the length and the height of the stiffener, and the thickness of the skin, respec-

tively (Figure 14), and u,v,w are the additional displacements due to buckling.

Substituting Eqs. (32) and (33) into Eq. (34) the second variation of the strain energy reduces to

= +j ,.o,._s2U T ._ _, _
2 2

" --- de d_

+T Jo[.,_ ___ _-_ _ D22(w.¢_)2+ 4,_dw.,f

(35)

The tenn -2_ z¢,_ vo,_ in Eq.(35) is odd with respect to ¢ and, therefore, vanishes during the inte-

gration. Moreover, the term A,,uo,] is independent of _ or x coordinates, and can be considered an

arbitrary constant during out-of-plane or in-plane bending. Thus, the final form of the second var-

iation of the strain energy of the stiffeners reduces to

(36)
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At this point, two kinds of terms appear in Eq. (36) : some of the terms are related to the in-plane

bending, and others are due to the out-of-plane bending of the stiffeners. Small displacement theory

permits us to write the total strain energy of the stiffeners as the sum of the two contributions.

In the case of a stiffener made of unidirectional material oriented along the longitudinal axis, it is

possible to rewrite the second variation of the in-plane energy term as

i f" -w + 2[A,,_ %,..]d_ _. =-5- [vo,.,.,Jd.,, (37)

with

It=2 --_ +Trlf _-+T

where r_, rr are the skin and stiffener thicknesses, and L and E_ are the moment of inertia and the

longitudinal elastic modulus of the stiffener, respectively. The in-plane part of the energy expression

is the same as the one used in Ref. 5.

Potential energy of the uniform axial loading N applied along short edges of the stiffener is derived

next. N is defined as the ratio of the load carried by the stiffener (given by Eq. (13)) over the stiffener

height (2//). The expression of the additional end shortening s(._) due to the buckling displacements

v,w is given by 8

s(O=-T.10\_ a_-yi _ d.
(38)

where w = w(rt, 0, vo = vo(_) are the additional displacements due to buckling. Therefore, the second

variation of the potential energy of the applied load is
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• },52V=- W(N)=- -5- + s(¢)N d_
II - "rs " "r--L

2 2

= N .,,, i - T. _ \ a. /
fI- 2 t

(39)

We now define the shape functions for the stiffener additional in-plane and out-of-plane defor-

mations due to buckling, vo(v/) and W(Vl, _), respectively. Note that the stiffener in-plane deformation

vo(rl) is to be connected to the out-of-plane deformation of the skin, which is described by a double

Fourier series:

M N

_2-a _ -a . mrtx rlrry O<_x<_a
w(x,y) = z..az..a Am, _ sm ----if-- sin T 0 < y <_ b

m=ln=l

(40)

We also assume a simple Fourier series to describe v.0/) of the stiffener

K

Z krr_/ 0 < _7< L (41)Vo(rl) = BI_ sin - l--f-- - - '
k=l

where Bk are the undetermined coefficients. This shape function satisfies the geometric boundary

conditions at the ends of the stiffeners:

vo = 0 at vl = 0 (42)

vo = 0 at v/ = L

The shape function for the stiffener out-of-plane deformation pattern is more complicated. The

stiffeners are attached to the skin along their longitudinal axis, and their out-of-plane deformation

corresponds to the in-plane-deformation of the skin. In this study, the contribution of the in-plane

deformations of the skin is ignored. Therefore, it is assumed that w = 0 at _ = 0 for all rl. The other
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longedgeof thestiffenersis free,andthetwoshortedgesareassumedto besimplysupported.The

followingshapefunctionsatisfiestheseboundaryconditions:

L K' O<_rl<l.

EE krc_l Ts rs
w(_l, _) = C#c _t sin 1----7- -II - -_ <_ _ < H +

/=lk=l

(43)

where C_k are the undetermined coefficients. For a panel that has I number of stiffeners, the shape

functions have to be re-indexed to indicate the stiffener number, vo,(r/i and w,(rt, ¢), where the un-

determined shape coefficients for the displacements vo,01) and w_(rt, C) are Bik and C.k, respectively.

The length of the i th stiffener is L, where i= 1 ..... I. The expression for the second variation of the

total potential energy of the stiffeners is the sum of the total energies of all the stiffeners:

_2_rg rid E 2= _ 7rvtiffener i

i=1

The derivation of each 62rr,,_E...._ is done by placing the shape functions into the equations (36),

(39), and (44). This leads to

6 2rr stiffener i ii i ri I i i (45)i = Uflexural + _bendingll + [Ibendinel2 + _'bPndine22 + _ bending66 + Vloading'

with
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__je:l K
4L/3 Z k4 B/_

k=l

2L_ I 1l=lp= = -

/<4 [(% + tot+_+ i
l+p+ 1

where

_= 2

T S

7"s- 2

(1 + (-l) _+')
(46)

and l + p >_ 4 in the summation for Ub.._J,,_=2.

3.3.3.3 Second variation of the total energy of the panel

The total energy of the panel is the sum of the total potential energies of the skin and the stiffeners.

The second variation of the panel total energy is given as follows:

2
_2rrpanel = ¢5 rtsM n + _]2rr_rid

= t :,_l:i,, + [i_td,, + l/grid + [/'grid

(47)
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Substituting the expressions of second variation of the energies, derived in Eqs. (31) and (45), into

Eq. (47) gives

_27¢pane l = Uskin + [_(vkin + Ugrid + ['%rid

M N

U.vkin= E E /lmn 2Pmn

m=ln=l

Im___= N _ _ _ _AmnApqSmnpq t

T' a 2R""
Vskin = - 2 L._ " mn +

I n= I m=l rt=l p=l q=l

I L L K' 1 K

EEEE U;""= _JikM.

i=1 l=lp=l k=l i= I k= I

•" r" I ,ilkp
Vgri d = -- )_ t'ilk " _ipk V + n2k zik

i l-- p=l k=l i=1 =I

(48)
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where the different coefficients are given by the following expressions,

pmn - _raab [ D ' I( -_- )a + 2(1) I2 + 2D66) ( --_- ) 28mn + D22(_ffn) 4]

Qik= 7r'lEl[s k4

4L3i

S mnpq (_xv p 4mnpq
= . (p2 _ m2)(n 2 _ q2) '

0,

T ik _ rr2k21f N'-_
2L i

= + + +

Uitklp _ Dllrr a k 4 i{)l+v + 1
2L_ ;+p+l [(v_+

l
(rn + p) and (n + q) odd /

]otherwise

__ 7"l+v+l]vl_._.

v;;k_ D_2"2_?r(p- l) 1 [<_ + :n;+v- 1_ ,-r;+.-']g
J12 - i, i l + p- 1 - s

• l [(7;+ ;;);+'-_ - r;+'-_]_
U_P - D22L¢2 lp(l - l)(p - I) l + p - 3 -s

k 2 l[)l+p-I -,l+p-1u_lk6p 2066rC21p [<7_s + - I x It/f/
= L i l+p- 1 "

vilkp = -_i 7r2 k 2
2t. i /+,+1 [(Ts+lt)l+"+' - T/+P+']g

(1 + (-I) ;+p)
_- 2

and 1+ p > 4 in the summation for the term lr_p. The ) is the load factor defined as

= I' )+,_w I' N i = 2N tNxl,=2_xx p Nyr )._-_ye N,:v _-_
(49)

Note that the only unknowns in Eqs. (48) are the Fourier coefficients, all other coefficients are
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specified in terms of the material properties, geometry, and load coefficients.

3.3.3.4 First constraint : continuity o,f skin and sffffener bending displacements

This constraint enforces the condition that the out-of-plane deformation of the skin w,k_,has to be

equal to the in-plane transverse deflection of the stiffeners vo;. The constraint is enforced at a finite

number of points located on the stiffener axes (Figure 15).

Let x,y,z be the axes of the skin and vt,_,_ the axes of a stiffener "

x,_1 are the longitudinal axes of the skin and the sliffener

y,{ are the transverse axes of the skin and the stiffener

z,x are the out-of-plane axes of the skin and the stiffener.

On each of the I stiffeners, there are .I constraint points, located at the coordinates (q_j, 0, 0) for the

stiffeners and (x_j,y_j,0) for the skin. Using the shape functions, this constraint can be expressed as

M N K

nrr _ k_r i = 1, 2..... [
gij = Z Z Amn sin' _mrr x!] sin _ y!/- _ B_I_ sin _ 4!/= 0 .] = 1,2, ..., J

m=In=l 14=1

(50)

This constraint is exactly the same as the one used in the previous workL

3.3.3.5 Second constraint : Contimdty of the skin and st_f.fener rotations

This constraint is included to ensure the continuity of rotation between the skin and the stiffeners

at the base of the stiffeners (along the _ axis (Figure 16)). It ensures that right angles between the

stiffeners and the skin are maintained.
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Figure 16. Second constraint. Rotation of the skin and stifl'enerat the constraint points
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The effect of the out-of-plane bending stiffnesses of the stiffeners on the panel buckling load is

rendered by the application of this constraint. The terminology "rotational contribution" will be

used to describe this effect.

qbiis defined as the angle between the stiffener i and the x axis of the skin. The slope of the de-

flection of the skin in the dircction of the X axis is obtained by using the chain rule differentiation

(gx (9 + Oy (9 (51)
c3x (gX (gx c_x c_y '

where

(9__&x= sin 'hi
_X

(9y
-- COS _i

e3X

Using the shape function for w,ki,, in Eq. (29), the slope of the skin deflection with respect to a

stiffener axis X; is given by

E EM N [ mrtx nrry nrr . mr_x nrty ]OWskin -- Am, ' sin 4_i-m-aF-cos ---if-- sin -b---- - cos 4z b- sm ---a-- cos T . (52)
coxi

re=In----1

Using the first derivative of the shape function associated with the out-of-plane deformation of the

stiffeners, with respect to the _ axis (evaluated at { = 0), the constraint can be expressed as

h!/- (gWski" (xi/, v_i)+ -- ('_!i, 0) = 0 , (53)

or as
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M N

_ sin bhu = E EAmn sin _bt-_ cos mrrxq nny O
m=l n---I

K'
krr

+ E Cilk sin--/_-./r/0=0
k=l

4nn mnxo n_._ t) ]cos i --if- sin -----fi-- cos

• (54)

3.3.3.6 Final System of Equations

The I.agrangian of the system is built as following:

l J 1 J

i= t/= I i= 1/= I

(55)

where p i_,vii are the Lagrange multipliers associated with the constraints g0, hq.

The solution of the problem is given by the set of equations

m = I, 2 ..... M
OL = 0

OAmn n = 1,2 ..... N

i=I,2 ..... l
OL = 0

OBik k --- 1.2 ..... K

i=I,2 ..... l

OL =0 k= 1,2 ..... K'

OQtk I = I, 2 ..... 1.

i=1,2 ..... l
OL = 0
c3l+O ] = I, 2 ...... I

i=1,2 ..... l
a_L_c=0
Oval ] = l. 2, ..... I

(56)

which represent (MN + IK + ILK' +2I,/) equations in (MN + IK + ILK' +2I./) unknowns. In ex-

pended form they axe
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This is a generalized eigenvalue problem: the eigenvalue of the problem is ,t and the eigenvector is

composed of the undetermined A_.., B;k, C.k, #;j, v_i. The problem can be written in the following

matrix form:

-[&d [0] [0] [&4] [K_._]

[0] [K=] [0] [&4] [0]

[0] [0l [K33] [0] [K35]

[K4_] [gj [0] [0] [0]

[Ksd [0] [K53] [0] [0]

{A}_

l'v.}

=).

[M,)] [0] [0] [0] [0]

[0] [M=] [0] [0] [0]

[O] [03 [M33] [0] [0]

[o] [o] [o] [o] [o]

[o] [o] [o] [o] [o]

{A}I

{B) I

{631

{u) i

(58)

In order to reduce the order, and hence the computer running time, a condensation is used. By

setting .I = K, which sets the number of terms in lhe in-plane deflection series of the stiffener to be

equal to the number of constraint points, it is possible to invert [K:4] and [K42], and eliminate

(/x_j}and {Bik} before calling the eigenvalue solver. [ ising the second and the fourth "lines" (It} and

(B} are written in terms of the other unknowns:

{#} = [K:4] -* {_[M=]{;3} - [K=](;3}}

(B} = - [k4:]-*[K4,]{A_
(59)

The system is then reduced to the following one, which is much smaller than Eq.(58).

[K*] [0] [K_5]I [{,4}

[O] [K33] [K3s][ ]{C}

[&_] [;_5_] [o] ] [ h')

JIM'] [o3 [I)]][{A)]

[[,)3 [o3 [o3Jl).)J

where

[K*] = [K_ I] + [Kl4] [K243-I[K22] [K42]-t [K41]

[M*] = [M)l] + [KI4] [K24 ]-_ [M22] [K42]-I [K41]

(61)
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No other rt_luction of the system is possible, but a modification can be done. The eigenvalue solver

reduces the left hand side matrix to upper ltessenberg form and the right hand side matrix to upper

triangular form. To minimize the number of operations needed for this step, it may be helpful to

re-order the terms inside the matrices and the vectors:

IE -1 II A,1 I  '1E°1t°lII A,1 (62)

The order of the system is given by

Order= MN + IK + IK'I. (63)

where

1. M x N is the number of terms used in the skin deflection series

2. I is the number of stiffeners

3. K is both the number of constraint point per stiffener or the number of terms used in the series

describing the in-plane deflection of the stiffener.

4. K'L is the number of terms used in the out-of-plane deflection series of the stiffeners.

For a panel composed of numerous ceils, the order increases very. rapidly to a point where the

precision of tile computer used might be a problem. A typical cxample is a 5 cell cross stiffened

panel (I = 10), with K= 13, K' = 6, l, = 6, M -- 17. N = q. The order is 643. while the same prob-

lem without the constraints number 2 woukt have an ordcr of only 153 (if M = 17,N = 9).
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4.0 Verification and Examples

A new computerized design code was developed based on the analysis derived in Chapter 3. The

purpose of this chapter is to analyze some results of the new code in order to verify its accuracy,

and to compare the new analysis with the previous one s .

A shorthand coding defined in this section is useful later on. This coding gives a quick description

of a panel and its loading, and is defined as

l_¢eorn C ncelt C lc S sl , (64)

where Ix.o., stands for the type of stiffening geometry (2 for longitudinally,3 for diagonally and 4 for

cross stiffened panels), _..H stands for the number of cells, 10z_lhlTin is the average compression stress

resultant applied to the panel, and 10t' Ibflin is the average shear stress resultant applied to the panel.

For example, for an 8 cell cross-stiffened panel loaded by 1000 lhlTin in compression and I00 lbflin

in shear, the shorthand coding is 4C8C3S2.
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4.1 Partial Verification Of The New Analysis

In order to check the analysis, some of its parts are isolated and studied independently.

There are two parts in this section. First, the analysis corresponding to the buckling of the stiffeners

is compared with the analysis of gtolP, which is already verified. Second, some new results are

compared to the results obtained in the previous study _.

4.1.1 Stiffener buckling

In the set of equations (57), it is possible to isolate the equations corresponding to the buckling of

a single stiffener which is simply supported on its short edges and longitudinal axis while free on its

long edges.

r lZ QpktJul¢v =
LP = 1 = (_'p,l¢vul_p

(65)

This set of equations corresponds to the buckling of the i" stiffencr. All the participating terms were

previously defined. Using thi_ set of equations, a Fortran code was written to compute the buckling

load of stiffeners with various dimensions. The results were compared with those obtained using the

code developed by Sto[l 9 which includes shear effects. For stiffeners with small thickness compared

It the computed buckling load was within 3% of the value computed in
to their width (r, < -3- )

Ref.9. Thus, for thin stiffeners the present-analysis is sufficient to calculutate the buckling load of

the stiffeners, and the transverse shear contribution does not need to be taken into account.
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The accuracy of the program with constraint on the rotation of the stiffener can also be checked.

By imposing a zero deflection of the skin everywhere, the constraint will set the rotation of the

stiffener to zero at the constraint points, which is close to clamped boundary conditions along the

stiffener longitudinal axis. The present analysis was then compared successfully to a buckling anal-

ysis for an isotropic stiffener for which one long edge is free, the other is clamped, and the two short

edges are simply supported.

4.1.2 Partial verification with the previous analysis

The stability equation of the panel as a whole (see Vq. (62)) is rewritten for convenience:

[K*] [K15 ] [(_] ][(A)] [[M*] [0]

e0] [ 35] [ [0] [0] [M .d

[o] [{A}1

L{cH

In these two large matrices, there are two kinds of submatrices; one group could be called behav-

ioral matrices and the other one is the constraint matrices. For example, the submatrices

K" and M" correspond to the stability of the panel including the flexural contribution of the

stiffeners. The submatrices K33 and M33 correspond to the out-of-plane stability of the stiffeners. The

submatrices Kts, K_I, Ks3, and K_5 correspond to the constraints on the rotation of the stiffeners. Note

that the two large matrices are not symmetric.

As can be seen, it is possible to choose the level of constraining by choosing the order of the system

to send to the eigenvalue solver. For example, starting from the top left of the matrices, an order

°
MN corresponds to the stability of the panel only taking into account the flexural contribution

of the stiffeners : exactly as in the previous studyL

57
Verification and Examples



.
MN + IK + IK'L corresponds to the stability of the panel taking into account the effect of

the out-of-plane bending stiffnesses of the stiffeners.

Therefore, this new analysis can be compared with the previous one in Ref. 5 by selecting an order

MN system for panels with equally sized cells. The results of such runs were exactly the same as the

ones in the previous study.

4.2 Convergence Study

As it is for most studies in which Fourier series are inw_lved, there is a real need to know exactly

the lowest number of terms that will give a good approximation of the solution. It should be re-

called that the Fourier series approach relies on infinite sums of terms, and that the precision in-

creases with the number of terms in the series. These terms are written in matrix form in the

computer code, and the more they are the larger is the order of the system and the time to solve it;

but the better is the precision of the result.

With the Lagrange multiplier technique, constraints are imposed at certain points along the length

of the stiffeners. This technique results in adding as many supplementary equations as the number

of constraint points. However, a large number of constraint points will increase the order of the

system. For this reason, the minimum number of constrain! points that are needed to obtain a

reasonable solution should be determined.

If the number of constraint points corresponding to a continuous constraint is small, the system

will be under restrained, and in the case of buckling response, the system will buckle in a mode that

violates the constraint conditions of the actual system. This is important for the determination of

Verification and Examples

58



thebuckling load of such a system since the determined buckling load will be lower than the actual.

This leads to a conservative design.

In the case of the geodesically stiffened panel, there are 5 parameters that need to be studied:

M : number of terms for the skin deflection along the x axis.

N : number of terms for the skin deflection along thc y axis.

K' : number of terms for the stiffener deflection along the 17axis

L : number of terms for tile stiffener deflection along the ( axis

K : number of constraint points per stiffener.

As it was previously rnentioned, it is possible to isolate different levels of constraint in the global

matrix. For the sake of simplicity a name is given to each of these levels:

Level 1 : Include only the constraint corresponding to tile flexural contribution of the stiffeners.

Level 2 : Include the constraints corresponding to both the flexural contribution of the

stiffeners and the continuity of rotation between the skin and the stiffeners.

The aim of tile following convergence study is to show the influcnce of the different parameters on

the resulting critical load of the panel. This study is done for a panel under compression, knowing

that for a shear loading the effect of the parameters is similar. Ncvcrtheless it can be noted that a

panel under shear loading requires more terms for the skin deflection. This makes sense since the

mode shapes are unsymmetrical. This study was done on a 4 cell cross stiffened panel, a level 2

of constraining was applied, and an optimal panel from the previous study was studied for the fol-

lowing reasons. When taking a panel with very strong stiffeners only the skin buckles. Then, the

number of terms in the out-of-plane deflection of the stiffeners will be meaningless since this de-

flection is zero. When taking a very thick skin and stiffeners with little bending stiffness, only the

stiffeners are going to buckle. Then M and N would not have any effect on the buckling load. By

Verification and Examples
59



taking an optimum panel from the previous analysis (IMM I), both skin and stiffeners have a de-

flection for the buckling mode. Then all the parameters are important.

It must be noted that the number of parameters needed depends on the panel geometry and the

number of cells. For example a I cell panel requires fewer terms for the skin deflection than a

multiple cell panel. For each case, before any optimization, a convergence study is done on the

baseline design, to determine the parameters needed.

4.2.1 Influence of K

This parameter controls the number of constraint points along the stiffener axes. At these constraint

points, both constraints I and 2 are imposed. The influence of the value of K on the panel buckling

load is demonstrated in Figure 17. As it can be expected, tile smaller the number of constraint

points (i.e., K small), the lower the buckling load. For example, it can be seen from the figure that

10 constraint points are enough to obtain a stable solution. From design to design, the minimum

value for K does not change and usually it is set to 12 for the analysis of any panel.

4.2.2 Influence of M and N

The numbers M and N correspond to the number of terms in the skin deflection series, and setting

them to small values artificially reduces the freedom of the skin, thereby stiffening it. By setting

M to a large value and varying N the effect of N can be isolated, and vice versa. The standard

parameters are M=20, N=0, K= 13, K'=6, L=6, when one is varying the others remain

constant. The effect of the number of terms in the assumed displacement on the buckling load of

panels is shown in Figures 18 and lq. In either increasing M or N, the buckling load reaches a stable
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Figure 17. Influence of K on the panel buckling load
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value after approximately 10 terms. If too few terms in the series are used, then the predicted

buckling loads are high and lead to nonconservative designs. For the case of a small number of

terms in the series the solution of the eigenvalue problem seems to be unstable, producing arti-

ficially high values for the eigenvatues.

The eigenvalue solver normilizes the eigenvectors such that their largest component is 1. For all

the unstable cases, the "1" and all the large values are in the subvector corresponding to the second

constraint (i.e., {v}). The other componenls (deflection series terms) are relatively very small (at

least 10 l° times less). Moreover, some complex eigenvalues are returned by the eigenvalue solver.

It seems that for these cases, the computer is not precise enough to mix high and very low order

terms. Increasing the parameters over M = 20 and N = q leads to a stable buckling load. The

subvectors are now of comparable magnitudes, the "1" is in the subvector corresponding to skin

deflection series (i.e., (A}), and all eigenvalues are real.

By reducing the number of constraints (decreasing K), over-constrained cases can become stable

cases. For example, the case M = 17, N = <_, K = 13 is not stable while M = 17, N = 9, K = 11 is

perfectly stable.

This problem seems to be ill-conditioning of the system in the eigenvalue solver when the number

of deflection terms is insufficient. Some submatrices contain large numbers (i.e., 10 6) while some

others contain very small values (i.e., 10 _). In tile case of a small number of deflection terms,

conditioning of the matrices may be possible. By multiplying the submatrices by some appropriate

constant, some over-constrained cases can become stable. In selecting the constant, the subvectors

of the eigenvector are artificially set to be of the same magnitude. For example, the case M= I,

N = 1, K = 13 can be stabilized by multiplying the second column of the [A] matrix of the system

by 108. This has the effect of reducing the magnitude of the subvector {v} while the other subvectors

have their magnitude increased to approximately the same magnitude as {v}.
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Figure 18. Influence of M on the panel buckling load.
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Figure 10. Influence of N on the panel buckling load.
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A practical method of setting M and N is the following. M (N) should be at least twice the number

of inter-stiffener sections crossed by a line parallel to the X (Y) axis. Then M and N should be in-

creased until a stable eigenvalue is reached. For example, a 4 cell cross-stiffened panel has 9 (3)

inter-stiffener sections for the X (Y) axis. Therefore, M (N) should equal 18 (6), but a slight increase

to 20 (9) is needed to obtain a stable eigenvalue.

4.2.3 Influence of K' and L

These parameters represent the number of terms in the out-of-plane deflection of the stiffeners. As

it was for the terms M and N, the larger they are, the more accurate is the solution. However, their

minimum value for an acceptable _olution is sought. K' and L represent, respectively, the number

of terms along the rl and _ axis of the stiffener. The effects of increasing K' and L on the panel

buckling load is shown in Figures 20 and 21, respectively. As can be observed from Figure 20 and

Figure 21, K'= 6, L = 1 is a sufficient pair to describe with accuracy the out-of-plane deflection

of the stiffeners. L = 1 means that the deflection of the stiffener is linear with _ (see Eq. (43)).

4.2.4 Conditioning of such a problem

The problem of ill-conditioning of eigenvalue problems and generalized eigenvalue systems is often

difficult to solve, particularly in the case of large systems. Ill-conditioning occurs when a small

variation of one of the terms in the matrix induces a large variation in the eigenvalues and

eigenvectors.

As an example, let us consider the following matrix:
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0

I

(66)

For this example, let us set the order to 40. If c =0 all the eigenvalues are zero

(2i = 0 , i= 1, ... ,n). Now, if r. = lf) 4,. the eigenvalues become )_i = 10_ i = 1, ... ,n. During

the computations of the eigenvalue solver, mistakes on tile order of r. are currently made. In our

example, there is a significant chance that the eigcnvalue _olver will replace _ = 10-40 by 0, which

would lead to erroneous results.

Noting the way the constraints are written, it can be observed that lhe coefficients corresponding

to the Lagrange multipliers are very, small when the others are quite large. In fact, some of the

submatrices Ksl, Ks3, and K_s are blocks of very. small numbers compared to K'. 71"his can have an

effect similar to the effect of _ in the previous example.

Solving such a system can result in a solution for which the subvectors are very different in mag-

nitude. As it is well known, computers can hardly handle computations inw_lving both very small

and very large numbers. 7I"o avoid this kind of a problem, it is p(_ssible to normalize the constraints

by multiplying some of the submatrices by a selected constant anti thereby obtain an homogeneous

eigenvector.

A method that was successful in solving the conditioning problem is explained here. In this method,

the system as represented by equation (62) is considered. 71'o simplify, the notation cond(A} is used

to represent the largest number in the A matrix. The method is as follows;
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1. The second "line" is multiplied by cond{K'}lcond{K_t}

2. The second "column" is multiplied by cond{K'}/cond{K_}

3. The [B] matrix is multiplied by cond{A}/cond{B}

4. The obtained eigenvalue is multiplied by cond{A}/cond{B} to obtain the eigenvalue of the or-

igin_il problem.

5. The obtained eigenvector does not need to be modified.

The fifth operation is justified by the following operation:

[A]{x} = )_[B]{x} _ [A]{x} = (t2-_)[.B]{ x} (67)

The eigenvalue solver used is the Fortran IMSI, subroutine (DGVI.RG 1990) t°.

4.3 Panel Buckling Response

In tile present work a constraint ensuring the continuity of rotations between the skin and the

stiffeners is used to improve the analysis and the predicticm of the bucklingload of the panels. This

constraint also has an effect on the buckling mode shape of the panel. The aim of this section is to

determine the effect of the new constraint on the buckling mode shapes and critical buckling loads

of geodesically stiffened composite panels.

ltowever, it should be recalled that the analysis was developed in the restricted field of small dis-

placement theory. No post-buckling analysis was done and the modes are only of a qualitative in-

terest.

As mentioned, the goal in adding the second constraint to the analysis was to improve the predic-

tion of the solution. In order to determine if there is any improvement, we compare the new
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bucklingmode shape and critical load to those obtained by the previous method (LMM 1) and to

some results obtained with the Finite Element Method (FEM).

4.3.1 The panel buckling modes

4.3.1. ! Types o.f response

The following brief study is used to show tile different types of response of a panel under shear or

compression. A one cell cross stiffened configuration was studied. For both compression loading

and shear loading, four cases were included. From one case to another only the skin thickness was

varied. It should be noted that for each type of loading (compression or shear) the panels do not

have the same buckling load.

Interaction between the stiffener deflection and the skin deflection is shown in Figures 22 through

29. On each figure the contour lines of the skin and stiffener buckling modes are drawn and a 3-D

view of these modes is also presented, lzigures 22 through 24 show the buckling mode of panels

under compression loading having, respectively, a thin, medium and thick skin. Only the panel with

thick skin does not participate in local inter-stiffener buckling; but in all cases the stiffeners buckle

in a two half wave type mode. tlowever, only in the case of the thin skin (see Figure 22) is this

mode truly a two haft wave mode. In the other two cases the mode shape of the stiffeners is dis-

torted due to skin mode interaction. In the case (ff Figure 22 the skin does not present any de-

flection along the stiffener axis. For the other two cases (see Figures 23 and 24) the buckling modes

of the stiffeners are more complicated, and the skin presents a deflection along the stiffener axis.

Figure 25 shows the buckling mode for a panel having a very thick skin under compression loading.

In this case the applied load is not large enough to buckle the skin. I lowever, the load carted by the

stiffeners is large enough to buckle them. It can be noted that the stiffeners buckle as if they were

clamped onto the skin.
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Figure 22. Mode Shapes for ,IClCxSOS (H=3.614; T, = 0. I 13;T,= 0.08)
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Figure 23. Mode Shapes for 4CICxSOM (H = 3.614; T, = 0.113;r,= 0.256)
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Figure 24. Mode Shapes for 4CICxSOB (H =3.614; ¢,=0.113;T, = 1.0)
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Figure 25. Mode Shapes for 4CICxSOK (H=3.614; "r,= 0.113;T,= 3.0

Verification and Examples 74



SKIN

(D

STIFF 1

STIFF 2

_--7-"=LZ__/_

Z

N 5TIFF I STIFF 2

Y

Figure 26. Mode Shapes for 4CICOSxS (H = 1.205; _,=0.133;_r_=0.05)

Verification and Examples 75



SKIN

X

i

STIFF I

STIFF 2
No deflection

Y
SKIN STIFF 1

Figure 27. Mode Shapes for 4£1£0$xM (H': !.205; _,=0.133;_, = 0.177)
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Figure 28. .Mode Shapes for 4CICOSxB (H = 1.205; 3, = 0.133;T, = 0.721)
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Figure 29. Mode Shapes for 4CICOSxK (It = 1.205; xr = 0.133;% = 2.4)
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The buckling mode of panels under shear loading with increasing skin thickness is shown in Figures

26 through 28. All of them present local inter-stiffener buckling. For these three geometries the

only stiffener under compression loading is stiffener I. Stiffener 2 is under tensile loading but still

presents nonzero deflection, this is due to the interaction between the skin and the stiffeners. Figure

29 show,_ the bucking mode of a panel having a very. thick skin under shear loading. The load is

too small to result in skin buckling but the load caried by stiffener 1 (compression load) buckles it.

Stiffener 2, under tensile loading, does no! participate in any deflection. For both thick skin panels

(Figures 25 and 29) the stiffeners buckle in a six half wave mode. This is due to the length/height

ratio of the stiffener. This would be the natural buckling mode of a clamped stiffener. When the

skin buckles, the stiffener has more complicated deflection_ that clearly show the importance of the

effect of the skin on the stiffener buckled mode.

4.3.1.2 Rotation of the skin along the stiffeners

It is important to know if the stiffeners, via their rotational effect, can significantly affect the mode

shape of the skin. In order to answer this question, different configurations of panels were studied

with the old method (I,MMI) and the improved one (I MM2). When plotting the contours of the

skin, no significant difference was found. When the plots of the rotation of the skin along the lon-

gitudinal axis of the stiffeners (where the rotational effect should be maximum) obtained by LMM 1

and I.MM2 were compared only some slight differences were detccled. In order to illustrate this,

the same 4CICxS0 and 4C1COSx configurations shown in the previous section are considered in

Figure 30 through Figure 35. The two thin lines represent the variation along the stiffener axis

of the slope of the skin with respect to a direction perpendicular to the stiffener, as computed using

LMM I. That is only including the constraint on the bending displacement of the stiffeners. The two

thick lines show the slope of the skin along the stiffener axis, as computed using I,MM2, including

both the constraint on the bending displacement of the stiffeners and the constraint enforchlg the

continuity of rotation between the skin and the stiffeners. Dashed lines are used for the second
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Figure 30. Skin Slope along the stiffeners for 4Ci CxSOS (H = 3.614; z, = 0.113;z, = 0.08)
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stiffener. As it appears on Figures 30 through 32, which corresponds to compression loading, only

the thin skin buckles in a truly two half wave mode along the stiffener attachment line. For thicker

skins, the mode is more complicated. Another interesting effect is shown in Figure 33 (thin skin,

shear loading), where the slope of the skin along the stiffener, as calculated with LMM2, is anti-

symmetric. However, for all cases, no major change in the skin buckling mode appears.

4.3.1.3 Comparison of the Buckling Mode Shapes with LMMI and FEM

In the previous work _, I,MM1 was compared with the FEM (with the program CSM Testbed u)

on a 3 cell cross stiffened panel (4C3CxS0). The test panel was 80 inches long by 28 inches high

and had three cross-stiffened cells. The skin was 0.2 inches thick and its stacking sequence was

[ -45/45/90/0]s. The stiffeners were made of unidirectional fibers and their thickness was 0.2 in.

Four different stiffener heights of 0.5, 0.75, 1.0 and 1.25 were considered.

The new analysis was applied to the same test panels and their buckling mode shapes were drawn.

The mode shapes obtained by the two methods (i.e., IMMI and I,MM2) are compared in

Figure 36. The contours obtained with the FEM are _hown in l:igure 37 and compared with the

present results. It appears that adding the second constraint to the analysis was a sensible im-

provement, since the prediction of the buckling modes for the cases (A) and (B) is now closer to

the one obtained by the FEM.

4.3.2 The buckling load

Keeping the same panel configurations, the buckling loads obtained by the three methods are now

compared in Table 3.

Verification and Examples 86



(A) (A')

(B) (B')

F

(C) (C')

(D)

(
C"

(D')

Figure 36. Buckled Mode Shapes for geodesically Stiffened Panels, LMMI and LMM2: LMMI
A)Hffi0.5. B)H=0.75, C)H=I.0, D)H=I.25 / LMM2 A')H=0.5, B')H=0.75,
C')H = 1.0, D')H = 1,25
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Figure 37. Buckled .Mode Shapes for geodesically Stiffened Panels, FEM: A)H=0.5 B)H=0.75
C)H = 1.0 D)H = !.25
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Table3. ComparisonofBucklingLoads for 3-cell cross-stiffened panels, between I,MMI, LMM2 and
FEM.

Stiffener

Height (in)

0.5
0.75
1.0
1.25

Panel Buckling I_oad

NFFM N? MMI

573 342
705 613
748 708
783 743

(Ibf/in)

NI.MM2

471
649
727
770

NLMMI

NFEM

0.596
0.870
0.946
0.949

NLMM2

NFEM

0.823
0.921
0.972
0.983

As can be seen in the table (Table 3), the new method predicts buckling loads that are much closer

to the t'mite element results than those from I,MMI. This improvement confirms that the effect

on the panel buckling load of the continuity of the rotations between the panel skin and the

stiffeners can be significant.

4.4 Second Constraint and Buckling Load

The purpose of this section is to study the influence of the second constraint on the panel buckling

load. Recall that the second constraint is used to ensure the continuity of the skin and stiffener ro-

tations at the base of the stiffener along its axis ,/.

In order to study the second constraint, the following method has been used. I lsing an initial design

and keeping the same cross-sectional area of the stiffeners (I/x rr = constant) and the same skin

thickness, the ratio HJ'rr is varied. The reason for keeping the same cross-sectional area for the

stiffeners is to keep the same load distribution in the panel. It must be noted that a ratio HI'or

smaller than 5 is not acceptable since the Classical l,amination Theory assumes the plate to be thin.

The critical loads obtained by using the two levels of constraint are compared. The examples of

studies on a 1 and 3 cell cross stiffened panel are shown in Figure 38 and Figure 39. These two
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figures show the panel buckling load obtained by using I,MM2 normalized by the panel buckling

load obtained by LMM 1 as a function of the stiffener aspect ratio, for two different skin thicknesses.

From both figures, it appears that the second constraint has a greater effect on thin skins than on

thick skins regardless of the stiffener aspect ratio. Moreover, this effect decreases as the aspect ratio

increases. As can be seen, in the case of thick skins, the effect of the the second constraint can be

neglected for an aspect ratio larger than 20. llowever, for small aspect ratios and/or thin skins this

constraint has to be taken into account. In addition, comparison of the results for 1 and 3 cell

panels presented in Figures 38 and 3c_, respectively, indicates that increasing the number of stiffeners

results in a larger rotational effect of low aspect ratio stiffcners for the thick skin. For an aspect ratio

tt/rr = 5, the 4C4CxS0 panel (l=igure 39), the rotational effect of the stiffeners corresponds to 20%

of the buckling load of the panel, for any skin thickness.

The analysis reveals that the second constraint is directly related to the out-of-plane bending

stiffnesses of the stiffeners. Thus, the thicker the stiffeners are, the more effective is the constraint

on the continuity of rotation between the skin and the stiffener. The stiffeners behave as an infi-

nitely large number of torsional springs placed on the skin. It is then obvious that these springs

will have a larger effect on a thin skin than on a thick one.

From the first remarks about the out-of-plane bending stiffnesses of the stiffeners (Dij), the concept

of stiffeners made of a sandwich material is implied. A stiffener made up of a light but thick core

and two skins would have the same in-plane properties (usefill for its flexural contribution) and the

same weight (or not very different) than a stiffener including only the two skins (glued together)

but will have much higher out-of-plane bending stiffnesses. Taking again the example of the springs,

a stiffener made with a sandwich composite material would increase the stiffness of the torsional

springs.
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To summarizethisdiscussionabouttherotationaleffectof thestiffenerson thepanelbucklingload,

it canbeconcludedthatthiseffectincreasesastheskinthicknessand/orthestiffenersaspectratio

H/Tr decreases (keeping the same cross sectional area).
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5.0 Wing Rib Design

In this section a design study of wing ribs is conducted. The code written to check LMM2 is used

to study new panel configurations that are likely to produce more efficient practical designs.

5. I The Cell Distribution

As was mentioned, the parameters that control tile the cell distribution can now be used as design

variables. The aim is to find out if there is a ncmuniform cell distribution that yields panels with

higher buckling loads, or for a given load panels that are lighter.

In the first section, the sensitivity of the panel to the cell distribution is studied. Then, some opti-

mum designs obtained by including the cell distribution in the design variables set are presented and

compared to previous results.
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5.1.1 Sensitivity to the cell distribution

As an example, a 3 cell cross stiffened panel under compression loading is considered. The width

X of the center cell (see Figure 40) is varied and the buckling load and the weight are studied.

When the code was used to find an optimum design using X as a design variable along with the skin

and stiffener thicknesses and the stiffener height, the calculated optimum cell distribution corre-

sponded to Xor, = 13.66. The effect of yawing X from its optimal value on the panel buckling load

and the panel weight, both normalized by their optimum values, is shown in Figure 40.

If X is increased from the optimum value, the weight decreases but the buckling load also decreases

below the design load. It can be noted that the reason for the weight decrease is that its minimum

is for 3 equally sized cells (i.e., X = 26.67). If X is decreased, the buckling load increases and the

panel becomes safer with respect to buckling, but the objective function increases as well. This

shows that the computed optimum is correct.

Another remark can be made. Increasing or decreasing X by 20% will only affect the weight by

0.3% and the buckling load by 4"_,. This has at least two implications. The first one is that some

manufacturing errors are permitted in this range. The second is that tile optimizer might have dif-

ficulties finding the actual optimum cell distribution, since the gradients of the objective function

and constraint on the buckling load with respect to the cell width design variable will be small.

5.1.2 Optimization of the cell distribution

For the three geometries and three different Ioadings (compression, shear and combined), a group

of panels was optimized by using constraint level 1 and including the cell distribution parameters

in the set of design variables. It should be noted that since the second constraint is not active here,
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the buckling of the stiffeners has to be studied separately as it is done in Ref.5. In fact for these

design cases, LMM1 analysis is modified to include the cell width design variable. By comparing

the optimum designs obtained with the modified analysis with the optimum designs found with

I,MM1 (with equally sized cells), it appears that a certain weight reduction can be achieved for

panels having a small number of cells, tlowever, when the the number of cells increases, the weight

reduction diminishes, and is insignificant for an _ cell panel. Since optimum design panels are those

having a large number of cells for the three geometries, they also should have equally sized cells.

Some examples of the influence of cell distribution on the optimum weight for a cross stiffened

panel are shown in Table 4. Panels Nc = 3, 4, and 5 are under an in-plane average compression

loading of Ny = 1000 lbf]in. The eight cell panel is under a combined compression-shear average

loading of Ny = N,y = 1000 Ibflin. The weight reduction obtained by also including the cell distrib-

ution as a design variable is not significant and decreases as the number of cells increases.

Table 4. Variable Stiffening Arrangement For

loading

Cross Stiffened Panel

D I1(1) Skin Thickness (in)
D V(2) Stiffener I ieight (in)

D II(3) Stiffener Thickness (in)
DV(4) Cell #1 width (in)

D//'(5) Cell #2 width (in)

O[I(6) Cell #3 width (in)
D V(7) Cell #4 width (in)

G(2) Skin Buckling

G(3) Stiffener Buckling
G(4) Strength of Material
OBJ Panel Mass (Ibm)
Panel Mass reduction (%)

Optimum Cross Stiffened Panel under Compression

NUMBER OF CELLS

Nc=3 Nc=4 Nc= 5 Nc=8

0.171
0.978

0.096
17.66

14.62
15.44

0.215

1.19
0.127

34.35
I 1.3fl

0.199
1.003
0.092
24.11
15._7

0.88E-3

-0.24
-0.93

31.61

-3.7

0.1E-2

-0.2E-2

-0.93
28.32

-2.8

0.57E-5
-0.48E-2

-0.93
25.22

-2.0

D V(i)= Design Variables, G(i)= Constrainls, OFIJ = Objective Function

Constraints G(i) are feasible when negative, range: -1 <_ G(i) < oc,
Skin laminate [-45/45/90/01_, all plies equal )hickness.

0.125
0.679

0.122
10.80

10.38

8.85
9.96

0.2E-3
-0.97E-I

-0.81

20.43
- l.(I
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5.2 Stiffener Rotational Effect / Optimum Design

In the previous study s, it was shown that the trend for the optimum design of geodesically stiffened

panels is toward a large number of cells, a thinner _kin. a lower aspect ratio of the stiffeners and a

lower ratio z,/t,. Moreover, it was _hown in the present work that the rotational effect of the

stiffener is higher when the ratio rJrr is lower. For these reasons it seems that for the optimum

design of such panels, the second constraint should be included in the analysis. Nevertheless, for a

large number of cells (nc > 8), the order of the system is large and, therefore, the computational time

required to solve it is large. For this reason, for the study of the rotational effect of the stiffeners,

only a small number of cells is considered. In fact, even with a small number of cells, a physical

understanding of the nature of the interaction mechanism between the skin and stiffeners is possible.

5.2.1 Rotational effect and number of cells

In order to study the rotational effect of tile stiffeners when the number of cells is varied, the fol-

lowing study was performed. The optimum designs obtained with I,MMI in the previous work

were considered. Their buckling loads were computed with I,MM2 and compared with the ones

computed with LMMI. It appeared that the ratio N_ _f_,,/Nr &f._fqincreases as the number of cells is

increased. However, for these panels, NrMM2 never exceeded X_ AfM_by more than 5%. An expla-

nation is based on the fact that for these panels the stiffeners were too thin to have a significant

bending effect; that is the ratio rdr_ was larger than 1.
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5.2.2 Lamination of the stiffener

As was previously mentioned, the rotational effect of the stiffener is directly related to its out-of-

plane beiading stiffnesses. Until now the code could not handle stiffeners as plates. With the mod-

ifications introduced in this work, it is now possible to investigate the effect of the laminate stacking

sequence of the stiffeners on the panel buckling load. In practice, it is possible to build panels in

which the stiffeners are laminated, if the additional effort to manufacture them is worthwhile.

In order to investigate the effect of stiffener stacking sequence on panel buckling, non-zero angle

plies are placed on the two faces of the stiffener laminates. Nine basic configurations of a 1 cell cross

stiffened panel were considered. For each of them the stiffeners were laminated in the sequence

[ -_l_/O/O]s, and _ was varied. The 9 basic configurations were divided in 3 main groups. The first

group has a thick skin, the second one has a medium skin, and the third one has a thin skin. In

each group, the cross-sectional area was kept constant (to keep the same load distribution), but the

ratio z_/r, was varied.

Note that this analysis was derived for specially or_hotropic stiffeners or stiffeners for which

anisotropic effects due to bend-twist coupling terms can be neglected. The present stiffener lami-

nated in the sequence [-a/a/0[0]s presents non-zero bending-twisting coupling terms DI6, D2_.

Anisotropic effects exist but are negligible since these coupling terms are much smaller than the

other bending stiffnesses D;;.

The panel buckling load, normalized bv I000 lbJTin, as a function of _, the orientation of the

stiffener outer plies, is shown in Figures 41 through 43 for three aspect ratios of the stiffener

(tf/'r, = 5, 16 and 32).
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5.2.2.1 Thick skin

From Figure 41 it appears that the best stiffener laminate, for the case of thick skin, is

unidirectional fibers. In this case, the gain in out-of-plane bending stiffness for the stiffeners in not

sufficient in comparison to the loss in the in-plane extension stiffnesses to maintain the buckling

load at its initial level. More¢wer, the higher the aspect ratio of the stiffencr is, the higher is its

buckling load, for any angle _.

5.2.2.2 Thin skin

For thin skin panels, see Figure 42, the effect of the stiffener aspect ratio is reversed; it appears that

as the aspect ratio of a stiffener is increased, the buckling load of the panel decreases. By reducing

the stiffener height but increasing its thickness, stiffener in-plane bending stiffnesses are reduced but

out-of-plane bending stiffnesses are increased. In this example, for the same stiffener cross sectional

area, higher buckling load panels are obtained when the stiffcner aspect ratio is lower, or when the

stiffener out-of-plane bending stiffnesses are higher. Since the rotational effect of the stiffener is re-

lated to its out-of-plane bending stiffnesses it appears that for thin skins this effect is important.

Moreover, it is verified that the angle at which lhe buckling load is the largest (for any aspect ratio)

is _ = 45°.

5.2.2.3 Intermediate case

The figure for the buckling load of intermediate thickness panels (Figure 43) shows two interesting

facts. First, for each aspect ratio, there is an angle _ for which the buckling load is maximum. This

shows that for these cases both the flexural and rotational effects are important, and that by judi-
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ciously laminating the stiffeners it is possible to achieve gains in the buckling load of the panel for

the same panel weight. For example, with _ = 34 ° the buckling load of the panel for which

HI'r, = 16 is increased by more than 5"/0. Secondly, the two curves on the top of the graph show

that a turning point between the two first cases (Thick and Thin Skins) is reached here; the buckling

load is not increased by doubling the aspect ratio of the stiffeners when lt/':r = 16 but it remains

the same.

5.2.2.4 Practical aspect o.f laminated sti.ffeners

In the previous study, it was shown that the trend for ttle optimum design of geodesically stiffened

panels is toward a large number of cells. It can be noted in the optimum designs obtained by

Phillips s that the ratio "r,/t, decreases when the number of cells is increased.

From what was presented, some non-zero angle plies in the stiffeners can increase the panel

buckling load significantly when the stiffener thickness is large compared to the skin thickness. For

this reason, it might be interesting to include lamination of the stiffeners in the optimum design of

the panels. The analysis now permits it.

5.2.3 Sandwich stiffeners

Another way of increasing the rotational effect of the stiffeners is to use stiffeners made of sandwich

material. In order to give some motivation to futur6 work, the following study is presented. The

4C8C3S3 optimum design obtained by Phillips 5 with IMM1 is considered. The stiffener thickness

is r, = 0.12 in. The panel buckling load computed with I,MM1 is NtMM, = 1000 Ibflin and with

I,MM2 is NLMM2 = 1049 lbflin, for a combined compression/shear loading (N 'h.... NC°"""'_°").

Now, the following sandwich stiffener is tried. The thickness of the core is 0.12 in and its density

is 10 times less than the composite one; on each face of the core a skin of thickness 0.06 in is placed.
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Thisresultsin increasingthebendingstiffnessesby a factor of 7 while keeping the same in-plane

extension stitrmesses, and only increasing the weight of the whole panel by 2%. The effect of the

new stiffeners on the panel buckling load is quite interesting; the buckling load is now

N[_/h = 1123 lbflin, which is 7.1% higher than NIMbi: and 12.3 % higher than NLMMI.

5.2.4 Partial Conclusion

From tiffs study it appears that the second constraint could be neglected during the optimization

of geodesically stiffened panels having unidirectional fiber stiffeners and low number of cells, since

their rotational effect on the panel buckling load is not significant, llowever, when the number of

cells is increased the rotational effcct of the stiffeners is significant and should be taken into account

for any analysis. Moreover, the rotational effect of the stiffeners can be significantly increased by

using laminated stiffeners and even more by using sandwich stiffeners.

Thick sandwich laminates are prone to adverse transverse shear effects. Since the use of sandwich

stiffeners can significantly increase the buckling load of the panel due to their important rotational

effect, it may be necessary to modify the analysis to include the shear effect in the stiffeners and

further study the use of sandwich stiffeners for wing rib panels.

5.3 Horizontal stiffeners

By placing stiffeners at locations where the buckled skin deflection is large, it is possible to increase

the panel buckling load. Starting from the buckled mode shapes obtained in Ref. 5, it can be seen

that deflection maximums are aligned horizontally. For this reason it is surmised that horizontal

stiffeners should be a good way to obtain more highly stable panels. Because of the assumption that
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strain along the X axis of the panel is zero (i.e., _ = 0), it is further assumed that these horizontal

stiffeners are not loaded in the prebuckling mode. In order to study panels with horizontal

stiffeners, the design code Pansys was modified.

5.3.1 Improvement of the panel buckling load

In order to show the effect of horizontal stiffeners on the panel buckling load the following exam-

ples are given. The two optimum 3 cell cross stiffened panels for compression and shear loadings

of 1000 Ibflin obtained in Ref. 5 are considered. For both panels the critical load is computed

considering one, three, and seven additional horizontal stiffeners placed respectively at

(1/2), (1[4,112,314), (I/8,1/4,3/8,1/2,5/8,3l 4,7/8) of the panel height. The critical loads for these

panels are indicated in the following table ('Fable 5).

Table 5. Critical load of two I,MMI optimum three cell cross-stiffened panels reinforced by horizontal

stiffeners.

Panel Buckling Load (lbf/in)

tlorizontal stiffener ('ompression Shear
location (b)

I .'. 1520 1350

1/4,_ -_/4 1780 1790

118,114,318,L 2.5/8,314,718 2040 2310

It appears that the panel critical load can be improved by a significant amount by adding horizontal

stiffeners.

5.3.2 Horizontal stiffeners and panel weight minimization

Since placing horizontal stiffeners permits asignificant panel buckling load increase for some design

loads, it is possible to design lighter panels than the ones obtained before. Two three cell cross-
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stiffenedpanelsreinforcedby one and three additional horizontal stiffeners placed at

(l/2)and(l14,1]2,314) of the panel height were optimized for the loadings 1000 lbf]in in com-

pression and shear. Their weight is compared with optimum three cell cross-stiffened panels for the

same Ioadings obtained in the previous study s. In Ref. 5 the weight corresponding to the optimum

panels was 32.81/bs for compression loading 1000 Ih/Tin, and 23.29/bs for shear loading 1000 lbflin.

The weight reduction obtained by reinforcing with horizontal stiffeners is given in the following

table (Table 6).

Table 6. Weight reduction obtained for optimum 3 cell cross-stiffened panels including one or three
horizontal stiffeners.

I lorizontal stiffener
location (b)

Weight reduction (%)

Compression

t/2 -15%
1/4,l/2,3/4 -19%

Shear

-12%
-20%

5.3.3 Remarks

In order to increase the panel buckling load, horizontal stiffeners should be placed where the skin

deflection is likely to be the highest. As an example the buckled mode shapes of the same 3 cell

cross stiffened panel with horizontal stiffeners under compression loading are given in -- Figure id

'IIOR 1' unknown --. Starting from configuration (A), a horizontal stiffener is placed at y = b/2

where the deflection of the buckled skin is highest. Then tile buckled skin shape is given by (B).

Two more stiffeners are then added at y = hi4 and y -- 3b/4 and the buckled skin mode is shown

by (C).

For thin skin cross-stiffened panels with one horizontal stiffener at y = hi2, the buckling load should

be the same as the one obtained for a diagonally stiffened panel with the same number of cells and

thicknesses but with only half the height. This is true only for thin skin panels where the buckled
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skin deflection along the horizontal stiffener is zero and the stiffener ahnost corresponds to a simple

support edge. This was verified successfully for various numbers of cells.
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(A)

(B)

(C)

Figure 44. Buckled mode shapes for optimum three cell cross-stiffened panels with (A) 0, (B) 1, (C) 3
horizontal stiffeners: Compression loading (1000 lbf/in)
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6.0 Concluding Remarks

The aim of the present work was to improve an energy melhod used for tile prediction of the

buckling load of geodesically stiffened wing rib panels thai are designed for use in large transport

type aircraft. An analysis developed previously for geodesically stiffened panels assumed the

stiffeners to be beam like elements and was only taking into account the flexural contribution of the

stiffeners in a direction perpendicular to the skin via the I agrange Multiplier Technique. For cer-

tain panel geometries comparison of the buckling load obtained by this analysis with the one cal-

culated via Finite Elements showed significant discrepancy. The lack of stiffener out-of-plane

bending stiffnesses (out-of-plane with respect to a plate like stiffener), which was ignored in the

previous analysis, was thought to be responsible for this difference. One of tile major goals of this

study was to improve the capabilities of the previous analysis and design code to account for the

out-of-plane bending stiffness of the stiffeners. Modifications were also sought to extend the anal-

ysis capability to handle variable geodesic grid density.

The wing rib was modeled as a rectangular panel 80 inches wide by 2g inches high. The boundary

conditions were idealized to be such that the edges were simply' supported and the in-plane exten-

sional deformation in the width direction was zero. The stiffeners were considered to be symmet-

rically laminated and balanced plates. The grid of stiffeners was symmetrically located on both sides

of a balanced, symmetrically laminated skin.
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The Lagrange Multiplier Method (I,MM) was modified by including the energy terms associated

with the out-of-plane bending stiffness of the stiffeners. The stiffeners are assumed to be plate ele-

ments attached to the skin by using constraints (in addition to the ones that ensure the equality of

the out-of-plane deflection of the skin to the stiffener deflection) in the I,MM analysis. These ad-

ditional constraints ensured the continuity of rotations between the skin and the stiffeners along the

stiffener attachment line. The result ix an analysis tool that permits the prediction of the buckling

load and mode shape of a geodesically stiffened panel with orthotropic plate-like stiffeners. For the

panel designs two constraints are considered, panel buckling (which includes the interactive skin

stiffener buckling) and material strength failure. This new analysis routine was combined with

ADS, a numerical optimizer package, in order to obtain a tool for designing wing ribs.

The results of the new I,MM buckling analysis (I ,MM2) wax compared with the results of a Finite

Element Method. Results indicate that I,MM2 generates a much better panel buckling prediction

than LMMI for low aspect ratios of the stiffeners The effect of stiffener out-of-plane bending

stiffness was studied and it was shown that it should n(_t be neglected in the case of thin skin and/or

low aspect ratio of the stiffeners.

The analysis tool was then used to investigate new possibilitics for designing optimum wing ribs.

It was shown that a variable cell distribution can produce lighter designs than the uniform cell

panels for a low number of cells but is less and less efficient as the number of cells is increased. "Iqae

study of the effect of out-of-plane bending stiffness of the stiffeners lead to the concept of sandwich

laminated stiffeners that are likely to increase the buckling load of the panel. The code was modi-

fied to maximize the buckling load of the panel by using the ply orientations and thicknesses of

both the skin and the stiffeners as design variables. The panel weight minimization, using the skin

ply thicknesses as design variables was shown to yield designs with significant weight reductions.

It was also shown that horizontal stiffeners can improve the buckling response significantly without

much weight penalty.
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